

MoldUDP64 Protocol Specification
Uncustomized

Version: 1.0

Document version: 1.00
Publication date: 2009-07-07
Confidentiality: Non-confidential

Whilst all reasonable care has been taken to ensure that the details are true and not misleading at
the time of publication, no liability whatsoever is assumed by OMX Technology AB, or any
subsidiary of OMX Technology AB, with respect to the accuracy or any use of the information
provided herein.

Any license, delivery and support of software systems etc. require entering into separate
agreements with OMX Technology AB.

This document contains confidential information and may not be modified or reproduced, in whole
or inpart, or transmitted in any form to any third party, without the written approval from OMX
Technology AB.

Copyright © 2014 The NASDAQ OMX Group, Inc.

All rights reserved.

 Mold UDP 64 Protocol Specification V 1.00

2

Date Author Notes

11/2/04 SL Initial version.

12/4/08 SL Updated for 64-bit support

2/24/09 HT Corrected minor error in documentation

7/7/09 SM Clarified the data length field definition

 Mold UDP 64 Protocol Specification V 1.00

3

Addressing

Note: For the current list of IP Addresses for NASDAQ OMX MoldUDP and

MoldUDP64 protocol data feeds, please refer to

http://www.nasdaqtrader.com/Trader.aspx?id=FeedIPS.

Overview

MoldUDP64 is a networking protocol that allows efficient and scaleable transmission of data
messages in a “one transmitter to many listeners” scenario. MoldUDP64 is a lightweight
protocol layer built on top of UDP that provides a mechanism for listeners to detect and re-

request missed packets.

In MoldUDP64, each outbound packet is transmitted only once regardless of the number of
listeners. Multiple messages may also be aggregated into a single network packet to reduce

network traffic. Optional caching Re-request Servers can be placed nearby remote receivers
to reduce latency and bandwidth over WAN links.

This document describes the messages sent between a MoldUDP64 server and its clients.

MoldUDP64 transmitters send Downstream packets via UDP multicast to transport the
normal data stream sent to the listeners. These packets are also sent via UDP unicast in
response to a Request message submitted by a listener. MoldUDP64 clients can send these
Request messages to request the retransmission of any desired packets from the data

stream.

The MoldUDP64 server will transmit on a well known multicast group for each type of
downstream MoldUDP64 datastream on a network. The listeners must subscribe to this
multicast group to receive the downstream data. One or more Re-request Servers may also

be deployed to service any unicast client requests for retransmission of specific messages.
The listeners must be configured with these IP addresses and port combinations to which
they can submit the requests.

Assumptions

All number fields in the MoldUDP64 messages specified in this document (i.e. sequence
number, message counts and message lengths etc) are binary numbers formatted in Big
Endian mode (i.e. most significant byte first). Note: This need not apply to the data
contained the Message Data fields of the Message Blocks.

Terms

Message

A message is an atomic piece of information carried by the MoldUDP64 protocol.

http://www.nasdaqtrader.com/Trader.aspx?id=FeedIPS

 Mold UDP 64 Protocol Specification V 1.00

4

MoldUDP64 can theoretically handle individual messages from zero bytes up to 64KB in
length although individual messages should be kept small enough so that the UDP
underlying network protocol can efficiently carry the resulting MoldUDP64 packets.

The contents of a MoldUDP64 message are defined by the higher level application.

Session

A Session is a sequence of one or more messages.

While a single session can last indefinitely, typically the application will define a session to
logically group messages together based on time delimitation.

Once a session is terminated, no more messages can be sent on that session. Depending on
the design of the MoldUDP64 system and the application, receivers may still be able to re-
request messages from a terminated session.

A session is considered active if it has started but not yet been terminated.

Downstream Packet

A MoldUDP64 transmitter sends “downstream” packets that are received by
MoldUDP64 listeners. A MoldUDP64 packet may contain a payload of 0 or more data

stream messages.

Each MoldUDP64 packet consists of a Downstream Packet Header and of a series of
Message Blocks. The Message Blocks carry the actual data of the stream.

Header

Downstream Packet Header

Field Name Offset Len Value Notes

Session

 0 10 ANUM

Indicates the session to which this packet

belongs.

Sequence Number 10 8 NUM

The sequence number of the first message in

the packet.

Message Count 18 2 NUM

The count of messages contained in this

packet.

Sequence Number

The Sequence Number field of the packet Header indicates the sequence number of
the first message in the packet. If there is more than one message contained in a
packet, any messages following the first message are implicitly numbered

sequentially.

Message Count

 Mold UDP 64 Protocol Specification V 1.00

5

The number of Message Blocks contained in a MoldUDP64 packet is specified by the
Message Count field of the Packet Header. The maximum payload size of a
Downstream Packet is determined by the sender. Note that a Message Count of zero
denotes a heartbeat and that a Message Count of 0xFFFF(hex, or 65535 in decimal)

denotes end of session.

 Mold UDP 64 Protocol Specification V 1.00

6

Message Block

The first field of a Message Block is the two byte Message Length. The remainder of
the Message Block is the variable length Message Data field. The first Message Block
field will always start immediately following the Header which is 20 bytes from the
beginning of the packet. Subsequent Message Blocks will begin after the last byte of
the previous Message Block.

Downstream Packet Message Block

Field Name Offset Len Value Notes

Message Length

 * 2 NUM

Indicates the length in bytes of the message

contained in this Message Block.

Message Data * * ANUM The message data.

* = Variable values

Message Length

The Message Length is an unsigned binary count representing the number of
message data bytes following this Message Length field. The message length field

value does not include the two bytes occupied by the message length field. The total
size of the message block is the value of the message length field plus two.

Message Data

The Message Data is actual data of the message being transmitted by MoldUDP64. It
is variable length and can be zero length. The meaning of the data is application
specific.

Heartbeats

Heartbeats are sent periodically by the server so receivers can sense packet loss

even during times of low traffic. Typically, these packets are transmitted once per
second and contain the next expected Sequence Number. A Heartbeat packet is a
MoldUDP64 packet with a Message Count of zero.

End of Session

When the current session is complete, Downstream Packets are sent with a Message
Count of 0xFFFF(hex, or 65535 in decimal) for a short while in place of Heartbeats.
These Downstream Packets contain the next expected Sequence Number, just like
Heartbeats. While the End of Session messages persist, re-requests may be made
on the current session. This is the last chance to ensure that all messages have
been received.

Request Packet

 Mold UDP 64 Protocol Specification V 1.00

7

The Request Packet is sent to request the retransmission of a particular message or
group of messages. The request packet is sent to a Re-request server. A receiver
may need to send this request when it detects a sequence number gap in received
messages. The response to a valid Request Packet is a standard Downstream Packet

unicast back to the source of the retransmission request. This allows downstream
MoldUDP64 users to read the retransmitted Downstream Packet in their multicast
processing socket if the request was made from that socket (in other words, the
client need only have one socket open to listen to the multicast and to process
retransmissions, even though the retransmissions are not multicast).

Request Packet

Field Name Offset Len Value Notes

Session

 0 10 ANUM

Indicates the session to which this packet

belongs.

Sequence Number 10 8 NUM First requested sequence number.

Requested Message Count 18 2 NUM

The number of messages requested for

retransmission.

Sequence Number

The Sequence Number field of the packet Header indicates the sequence number of
the first message requested.

Requested Message Count

The Message Count indicates how many messages should be retransmitted. If the
total size of the requested messages exceeds the maximum payload size of the of
one UDP packet, only the number of messages that completely fit will be returned.
Additional retransmission requests must be made for the subsequent messages if

they are still desired.

 Mold UDP 64 Protocol Specification V 1.00

8

Receiver Example

A typical MoldUDP64 receiver client would be configured with the following
parameters:

 The UDP port to listen on and the Multicast group to join
 A list of one or more Request Servers that are available to answer

retransmission requests for this stream. Each server is specified as a
host IP address and a UDP port to which to send requests.

 A session and sequence number of the next expected message if the
client is being restarted.

A typical MoldUDP64 receiver client might obey the following flowchart:

1. Open a UDP socket for the appropriate port and join the desired

multicast group.
2. Examine the first received packet to determine the currently active

session.
3. If the received session does not match the expected session, abort and

report the error.
4. Examine the sequence number of the first recently received packet.
5. If the sequence number does not match the next expected sequence

number, send a Request Packet to the Request Server with expected
packet number. Wait for a new packet and return to step 4.

6. Process each of the received messages in the packet. If a Downstream
Packet with the Message Count set to End of Session is received,

handle the End of Session event.
7. Wait for a new packet and return to step 4.

